These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional organization of the trans-regulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa.
    Author: Yahr TL, Frank DW.
    Journal: J Bacteriol; 1994 Jul; 176(13):3832-38. PubMed ID: 8021164.
    Abstract:
    The transcriptional organization of the exoenzyme S trans-regulatory locus was studied by using promoter fusion and transcriptional start site mapping analyses. The 5' regions flanking open reading frames encoding ExsC, ExsB, ExsA, and ExsD were cloned in both orientations into the promoter vector pQF26, which contains the chloramphenicol acetyltransferase reporter gene (cat). CAT activity from each promoter fusion transformed into Pseudomonas aeruginosa and Escherichia coli was measured. The trans-regulatory locus promoters demonstrated low to undetectable CAT activity in E. coli regardless of the orientation of the DNA fragment relative to the reporter gene. In P. aeruginosa two of the promoter clones containing DNA located 5' of exsC (pC) and exsD (pD) demonstrated significant CAT activity. Transcriptional initiation from pC and pD was dependent on the orientation of the DNA fragment, the inclusion of a chelator in the growth medium, and the presence of a functional exsA gene. Transcriptional start sites were mapped for the pC and pD promoter regions by using total RNA isolated from P. aeruginosa strains grown in medium including a chelator. Our data are consistent with an operon model for the transcriptional organization of the exoenzyme S trans-regulatory locus. In addition, ExsA appears to be involved in controlling transcriptional initiation from both the trans-regulatory locus and a region located immediately downstream of the exsA gene.
    [Abstract] [Full Text] [Related] [New Search]