These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantal and non-quantal ACh release at developing Xenopus neuromuscular junctions in culture.
    Author: Young SH, Grinnell AD.
    Journal: J Physiol; 1994 Mar 01; 475(2):207-16. PubMed ID: 8021828.
    Abstract:
    1. Single acetylcholine receptor (AChR) channel openings, detected by the whole-cell patch clamp technique, were used to monitor quantal and non-quantal ACh release at synapses in 1- and 2-day-old co-cultures of Xenopus embryonic motoneurons and muscle cells. motoneuron growth cones in ways that presumably reflect muscle-nerve inductive influences and the development of neurotransmitter release mechanisms. 2. Miniature endplate currents (MEPCs) occurred at a mean frequency of approximately 0.6 s-1 with a skewed distribution and mean amplitude of about twenty channel openings. In addition, occasional brief episodes of rapid deviations in the baseline were observed in some cells, with mean amplitudes of 4-8 pA and durations of a few hundred milliseconds. However, these episodes did not closely resemble summated openings of AChR channels. Moreover, where tested, these episodes were not blocked by curare; and comparable episodes were seen in an uninnervated myocyte. Thus they appear not to reflect ACh release from the nerve terminal. 3. Single-channel openings that might have been responses to non-quantal release of ACh were observed at rates of 0.9-12.3 min-1 (mean 3.0 min-1), only 1-5 times the rate of spontaneous AChR channel openings in uninnervated myocytes (mean 1.4 min-1). 4. We conclude that there is no significant non-quantal ACh leak from the presynaptic contacts in these immature synapses under these culture conditions. This is in disagreement with other, less direct, experimental reports, but consistent with findings in mature frog motor nerve terminals.
    [Abstract] [Full Text] [Related] [New Search]