These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The marsupial MHC: the tammar wallaby, Macropus eugenii, contains an expressed DNA-like gene on chromosome 1. Author: Slade RW, Hale PT, Francis DI, Graves JA, Sturm RA. Journal: J Mol Evol; 1994 May; 38(5):496-505. PubMed ID: 8028029. Abstract: In the placental mammal major histocompatibility complex (MHC) three main families of class II genes, DR, DQ, and DP, have been recognized. Each family contains genes that code for one or more A- and B-chains. Recent evidence has indicated that a fourth family can be described, the DN/DO family. These four families arose sometime early in mammalian evolution. Our purpose was to deduce the MHC of an early mammalian ancestor of marsupials and eutherians. Using primers designed to conserved regions in exon 2 and exon 3 of the DQA gene we amplified an 830-bp band from the total genomic DNA of the marsupial, Macropus eugenii (tammar wallaby). However, sequence analysis of cloned genomic products showed that the primers had amplified three genes, two of which appeared to be alleles at one locus, while the other gene belonged to a closely related locus. Phylogenetic analysis showed that both these loci were most closely related to the human (HLA-DNA) and mouse (H-20a) DNA genes, with a bootstrap support of 78%. Expression of only one locus could be detected by RT-PCR from spleen RNA. In situ hybridization to tammar wallaby chromosomes mapped these genes to one region on the long arm of chromosome 1, indicating the position of the MHC in marsupials. Related A-chain genes were detected in monotremes, and human by southern blotting, and very faint bands were observed in the chicken. Hybridization with a tammar DNA-like gene on several marsupial species showed evidence of at least three DNA-like loci in the tammar wallaby, at least one in the koala, but none in the kowari. This indicates that the organization of the class II MHC may be more dynamic in marsupial than in placental mammals, but, in contrast to a previous study on the MHC of a marsupial, we cannot conclude that the class II gene families of placental and marsupial mammals evolved from different ancestral genes.[Abstract] [Full Text] [Related] [New Search]