These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor. Author: Perez C, Coeffier E, Moreau-Gachelin F, Wietzerbin J, Benech PD. Journal: Mol Cell Biol; 1994 Aug; 14(8):5023-31. PubMed ID: 8035786. Abstract: Induction by gamma interferon (IFN-gamma) of the gene encoding the human high-affinity Fc gamma receptor (Fc gamma R1) in myeloid cells requires an IFN-gamma response region (GRR) and a myeloid cell-activating transcription element (MATE). GRR and MATE interact with factors to form, respectively, an IFN-gamma-activating complex (GIRE-BP), depending on the phosphorylation of the 91-kDa protein (subunit of ISGF3), and a cell-type-specific complex (MATE-BP). Although GIRE-BP is detected in cells of different origins after IFN-gamma treatment, the presence of MATE-BP was found to be restricted to B- and myeloid cell lines. Sequence analysis of a cDNA encoding a polypeptide recognizing specifically the MATE motif led to the identification of this product as the proto-oncogene PU.1/Spi-1, a transcriptional activator expressed in myeloid and B cells. Expression of this factor in nonhematopoietic cells allowed IFN-gamma-induced expression of a reporter gene under control of the GRR and MATE sequences. The presence of these motifs in other gene promoters indicates that the binding of PU.1/Spi-1 and IFN regulatory proteins to their respective motifs could be part of a general mechanism leading to cell-type-restricted and IFN-induced gene expression.[Abstract] [Full Text] [Related] [New Search]