These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The catalytic role of aspartate in the active site of glutamate dehydrogenase.
    Author: Dean JL, Wang XG, Teller JK, Waugh ML, Britton KL, Baker PJ, Stillman TJ, Martin SR, Rice DW, Engel PC.
    Journal: Biochem J; 1994 Jul 01; 301 ( Pt 1)(Pt 1):13-6. PubMed ID: 8037659.
    Abstract:
    A putative catalytic aspartyl residue, Asp-165, in the active site of clostridial glutamate dehydrogenase has been replaced with serine by site-directed mutagenesis. The mutant enzyme is efficiently overexpressed in Escherichia coli as a soluble protein and can be successfully purified by the dye-ligand chromatographic procedure normally employed for the wild-type enzyme. By several criteria, including circular dichroism spectrum, sulphydryl reactivity with Ellman's reagent, crystallization and mobility in non-denaturing electrophoresis, the enzyme appears to be correctly folded. NAD+ protects the D165S mutant against modification by Ellman's reagent, suggesting unimpaired binding of coenzyme. In standard assays the specific activity is decreased 10(3)-fold in the reductive amination reaction and 10(5)-fold for oxidative deamination. Kinetic studies show that apparent Km values for NADH and 2-oxoglutarate are almost unchanged. The large reduction in the reaction rate coincides with a weakening of the affinity for ammonium ion (Km > 300 mM, compared with 60 mM for the wild-type). The data are entirely consistent with the direct involvement of D165 in catalysis rather than in the binding of coenzyme or 2-oxoglutarate.
    [Abstract] [Full Text] [Related] [New Search]