These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transport of cycasin by the intestinal Na+/glucose cotransporter.
    Author: Hirayama B, Hazama A, Loo DF, Wright EM, Kisby GE.
    Journal: Biochim Biophys Acta; 1994 Jul 13; 1193(1):151-4. PubMed ID: 8038185.
    Abstract:
    The medicinal and food use of seed from the cycad plant (Cycas spp.), which contains the neurotoxin cycasin, is a proposed etiological factor for amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC), a prototypical neurodegenerative disease found in the western Pacific. Cycasin, the beta-D-glucoside of methylazoxymethanol might enter neurons and other cells via a glucose transporter. Since the intestinal brush-border Na+/glucose cotransporter plays a major role in the absorption of monosaccharides, the following studies were conducted to determine if cycasin, the beta-D-glucoside of methylazoxymethanol, is a substrate for the transporter. We measured the ability of cycasin to (i) inhibit Na+/glucose uptake into rabbit intestinal brush-border membrane vesicles, and (ii) to generate current by the cloned Na+/glucose cotransporter (SGLT1) expressed in Xenopus laevis oocytes. The results show that cycasin inhibits Na(+)-dependent sugar transport in the vesicles, and cycasin generates phlorizin-sensitive currents in oocytes. We conclude that cycasin is a substrate for the intestinal brush-border Na+/glucose cotransporter, albeit with a lower affinity than D-glucose. This suggests that cycasin may be absorbed from the gut lumen by the cotransporter, and as a result either cycasin or the aglycone is presented to the blood-brain barrier for uptake into the brain.
    [Abstract] [Full Text] [Related] [New Search]