These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Substrate specificity of L-delta-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products. Author: Baldwin JE, Shiau CY, Byford MF, Schofield CJ. Journal: Biochem J; 1994 Jul 15; 301 ( Pt 2)(Pt 2):367-72. PubMed ID: 8042979. Abstract: Potential substrates for L-delta-(alpha-aminoadipoyl)-L-(cysteinyl)-D-valine (ACV) synthetase were initially identified using both the amino-acid-dependent ATP<-->pyrophosphate exchange reaction catalysed by the enzyme and the incorporation of 14C-radiolabelled cysteine and valine into potential peptide products. S-Carboxymethylcysteine was an effective substitute for alpha-aminoadipate and both allylglycine and vinylglycine could substitute for cysteine, indicating that the thiol group of cysteine is not essential for peptide formation. L-allo-Isoleucine but not L-isoleucine substituted effectively for valine. The structures of the presumed peptide products derived from these amino acids were confirmed by combined use of electrospray-ionization m.s. (e.s.m.s.) and 1H n.m.r. These results clearly indicate that, in common with other peptide synthetases, but in contrast with ribosomal peptide synthesis, ACV synthetase has a relatively broad substrate specificity.[Abstract] [Full Text] [Related] [New Search]