These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bradykinin-evoked release of [3H]noradrenaline from the human neuroblastoma SH-SY5Y. Author: McDonald RL, Kaye DF, Reeve HL, Ball SG, Peers C, Vaughan PF. Journal: Biochem Pharmacol; 1994 Jul 05; 48(1):23-30. PubMed ID: 8043027. Abstract: Bradykinin (BK) evoked [3H]noradrenaline ([3H]NA) release from the human neuroblastoma SH-SY5Y and this was enhanced by pre-treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) for 8 min. This effect of BK was inhibited by 500 microM [D-Phe7]BK and 100 microM [Thi5,8,D-Phe7]BK but not by 500 microM [Des-Arg9,Leu8]BK. The BK (B1)-agonist [Des-Arg9]BK did not evoke [3H]NA release. This suggested that SH-SY5Y expressed BK (B2)-receptors coupled to the release of [3H]NA. BK acting at B2-receptors, also elevated intracellular calcium and depolarized SH-SY5Y cells. Although pre-treatment of SH-SY5Y cells with TPA enhanced BK-evoked [3H]NA release, the elevation of intracellular calcium [Ca2+]; was decreased by about 50%. BK-evoked release of [3H]NA in cells not pre-treated with phorbol ester was only 23% dependent on extracellular calcium. In comparison, following phorbol ester treatment approximately 40% of [3H]NA release was dependent on extracellular calcium. Nifedipine (5 microM), CoCl2 (1 mM) and NiCl2 (1 mM) inhibited NA release in SH-SY5Y cells pre-treated with TPA by 16.0, 47 and 44%, respectively. The results of this study showed that BK, acting at B2-receptors, activated [3H]NA release in SH-SY5Y. Part of this effect appeared to be due to activation of L-type calcium channels but the majority of BK-evoked [3H]NA release in SH-SY5Y cells appeared to depend on [Ca2+]i.[Abstract] [Full Text] [Related] [New Search]