These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Salivary gland extracts of partially fed Dermacentor reticulatus ticks decrease natural killer cell activity in vitro.
    Author: Kubes M, Fuchsberger N, Labuda M, Zuffová E, Nuttall PA.
    Journal: Immunology; 1994 May; 82(1):113-6. PubMed ID: 8045588.
    Abstract:
    The salivary glands and saliva of ticks (Arachnida, Acari, Ixodida) play a vital role in blood feeding, including manipulation of the host's immune response to tick infestation. Furthermore, a diverse number of tick-borne pathogens are transmitted to vertebrate hosts via tick saliva. A factor synthesized in the salivary glands of feeding ticks potentiates the transmission of certain tick-borne viruses. We show that salivary gland extracts (SGE) derived from Dermacentor reticulatus female ticks fed for 6 days on laboratory mice (SGED6) induced a decrease in the natural killer (NK) activity of effector cells obtained from 16 healthy blood donors. The decreased activity ranged from 14 to 69% of NK activity observed with the respective untreated effector cells. Such a decrease was not observed after treatment of effector cells with SGE from unfed ticks. Ten-fold dilution of SGED6 significantly reduced the capacity to decrease NK activity and a further 10-fold dilution almost eliminated the effect. After addition of IFN-alpha 2, the SGED6-induced decrease in NK activity was restored to activity levels approaching those of untreated cells. The apparent reversibility of the inhibition indicates that the effect of SGED6 on NK activity was not due to cytotoxicity. The results demonstrate the presence of a factor(s) in the salivary gland products of feeding D. reticulatus female ticks that influences human NK activity in vitro. These data suggest a possible mechanism by which tick SGE potentiates the transmission of some tick-borne viruses through suppression of NK activity.
    [Abstract] [Full Text] [Related] [New Search]