These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo studies of cellular energy state, pH, and sodium in rat liver after thermal injury. Author: Xia ZF, Horton JW, Zhao PY, Bansal N, Babcock EE, Sherry AD, Malloy CR. Journal: J Appl Physiol (1985); 1994 Apr; 76(4):1507-11. PubMed ID: 8045826. Abstract: In vivo 31P- and 23Na-magnetic resonance spectroscopy was used to measure phosphorus metabolites, intracellular pH, cytosolic free Mg2+, and intracellular Na+ in the liver of rats 24 h after 40% total body surface area full-thickness burn injury. Studies were performed during infusion of thulium (III) 1,4,7,10-tetraazacyclododecane N,N',N",N"'-tetra(methylenephosphonate), which served as the Na+ shift agent. Compared with the sham-burn group, there was a significant increase in hepatic intracellular Na+ along with a decrease in intracellular pH and free Mg2+. The ratio of intra- to extra-cellular Na+ increased, indicating a decreased Na+ gradient that may determine the hepatic transmembrane potential difference. Hepatic beta-ATP/P(i) also significantly decreased, which suggests that either ATP utilization is significantly accelerated or ATP synthesis is inhibited after the thermal injury. Of the cations measured (Na+, Mg2+, H+), the change in intracellular Na+ was most dramatic. This study demonstrates that major burn injury may cause profound changes in hepatic bioenergetics and ionic metabolism 24 h after injury and that intracellular Na+ may be a sensitive indicator of hepatic dysfunction 24 h after injury. Because these animals tolerated the shift reagent, thulium (III) 1,4,7,10-tetraazacyclododecane N,N',N",N"'-tetra(methylenephosphonate), nuclear magnetic resonance spectroscopy may prove valuable in monitoring intracellular cations in the liver after major injury.[Abstract] [Full Text] [Related] [New Search]