These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca(2+)-dependent negative control mechanism for Ca(2+)-induced Ca2+ release in crayfish muscle. Author: Györke S, Palade P. Journal: J Physiol; 1994 Apr 15; 476(2):315-22. PubMed ID: 8046645. Abstract: The mechanism of termination of Ca(2+)-induced Ca2+ release (CICR) from the sarcoplasmic reticulum has been investigated in voltage clamped cut crayfish muscle fibres loaded with rhod-2. During depolarizing steps evoking calcium current (ICa), Ca2+ release was first activated. Then the release rapidly (tau approximately 6 ms) declined, as evidenced by the rate of change of the intracellular fluorescence signal representing a Ca2+ transient. The rapid termination of release was not accounted for by inactivation of the trigger ICa or depletion of Ca2+ from the SR, since the rate at which release declined was constant under conditions where the rate of ICa inactivation and the amount of Ca2+ released varied widely. Pre-elevations of [Ca2+]i with prepulses or photolysis of caged Ca2+ caused depression of Ca2+ release during a subsequent test pulse. When the rate of ICa onset was varied by applying voltage ramps with different slopes, currents with fast onset elicited larger Ca2+ release than calcium currents with slower onset, even though the amplitude of the currents was the same. These results suggest that a Ca(2+)-dependent negative control mechanism exists which mediates the termination of CICR independently of the duration of the trigger ICa and before significant depletion of Ca2+ in the SR occurs.[Abstract] [Full Text] [Related] [New Search]