These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Author: Nicoletti F, Di Marco R, Barcellini W, Magro G, Schorlemmer HU, Kurrle R, Lunetta M, Grasso S, Zaccone P, Meroni P. Journal: Eur J Immunol; 1994 Aug; 24(8):1843-7. PubMed ID: 8056041. Abstract: We have evaluated the effects of a treatment with soluble interleukin-1 receptor (sIL-1R) in the accelerated model of autoimmune diabetes induced by cyclophosphamide (CY) in the non-obese diabetic (NOD) mouse. Prior to the CY challenge (350 mgkg body weight), female euglycemic NOD mice were randomly divided into three groups (A-C). Groups B and C were treated daily from 1 day before to 13 days after the CY challenge with sIL-1R at doses of 0.2 and 2 mg/kg body weight. Group A was treated with PBS. By 2 weeks after CY administration, an acute form of autoimmune diabetes with glycosuria, hyperglycemia and severe insulitis occurred in the majority (13/20, 65%) of the control mice (group A). In contrast, repeated injections with sIL-1R protected NOD mice from insulin-dependent diabetes mellitus (IDDM) development in a dose-dependent fashion; the incidence of IDDM was 53.3% (8/15) in the mice treated with 0.2 mg/kg and only 6.7% (1/15) in those treated with 2 mg/kg. However, none of the doses of the sIL-1R reduced the extent of insulitis in NOD mice. Importantly, the anti-diabetogenic property of sIL-1R may not involve major T cell function impairment; accordingly, in parallel experiments, splenic lymphoid cells from NOD mice not challenged with CY, but treated with 2 mg/kg sIL-1R for 5 consecutive days showed a normal distribution of mononuclear cell subsets and maintained their capacity to secrete interferon-gamma and IL-2 and to proliferate in response to polyclonal mitogenic stimulation with concanavalin A.[Abstract] [Full Text] [Related] [New Search]