These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries.
    Author: Rasika S, Nottebohm F, Alvarez-Buylla A.
    Journal: Proc Natl Acad Sci U S A; 1994 Aug 16; 91(17):7854-8. PubMed ID: 8058723.
    Abstract:
    New neurons are added to the high vocal center (HVC) of adult male and female canaries. Exogenous testosterone induces a marked increase in HVC size in adult female canaries, though the mechanisms responsible for this increase remain unknown. To understand the mechanisms, we analyzed the effects of testosterone on neuronal recruitment in the female HVC. Intact adult female canaries received Silastic implants that were empty or filled with testosterone. Birds in the short-survival group received the Silastic implant, followed by a single injection of [3H]thymidine 2 days later, and were killed on the following day. Birds in the long-survival group were injected once a day for 5 days with [3H]thymidine and received the Silastic implant 20 and 40 days later. These birds were killed 60 days after the first injection of [3H]thymidine. The number of 3H-labeled ventricular zone cells above, rostral, or caudal to HVC was not affected by the hormone treatment in the short-survival birds, suggesting that testosterone did not affect neuronal production. However, the number of 3H-labeled HVC neurons that projected to robust nucleus of the archistriatum (RA) in the long-survival birds was three times greater in the hormone-treated than in the control group, though the total number of RA-projecting cells did not change significantly. Testosterone also induced an increase in the size of the HVC cells that project to RA. Thus, these experiments suggest that testosterone affects the recruitment and/or survival of newly generated RA-projecting HVC neurons but does not affect their production.
    [Abstract] [Full Text] [Related] [New Search]