These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzymatic characteristics of chimeric mYc/rYc1 glutathione S-transferases. Author: Van Ness KP, Buetler TM, Eaton DL. Journal: Cancer Res; 1994 Sep 01; 54(17):4573-5. PubMed ID: 8062243. Abstract: Mice are resistant to aflatoxin carcinogenicity primarily due to expression of a glutathione S-transferase (mYc) with high catalytic activity toward aflatoxin B1-8,9-epoxide (AFBO). In contrast, rats are more sensitive to aflatoxin carcinogenicity due to the constitutive expression of a glutathione S-transferase with relatively low catalytic activity toward AFBO (rYc1). To identify the contribution of different regions of the mYc protein that confer high catalytic activity toward AFBO, six chimeric mYc/rYc1 GST enzymes were generated utilizing full and partial restriction enzyme digestions at two conserved StyI sites in the mYc and rYc1 complementary DNAs (between amino acid residues 56-57 and 142-143). Recombinant wild-type and chimeric glutathione S-transferases were bacterially expressed, affinity purified, and their catalytic activities measured toward AFBO, delta 5-androstene-3,17-dione, 1-chloro-2,4-dinitrobenzene, and ethacrynic acid. The set of chimeras displayed a wide range of catalytic activities toward the substrates assayed. The chimeras with the greatest activity toward AFBO were 1:56rat-57: 221mouse and 1:56mouse-57:142rat-143:221mouse, with AFBO conjugating activities 200 and 8 times greater than wild-type rYc1, respectively. These results demonstrate that the residues that confer high AFBO conjugation activity in mYc are located in the region spanning residues 57-221.[Abstract] [Full Text] [Related] [New Search]