These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training.
    Author: Schmidt TA, Hasselbalch S, Farrell PA, Vestergaard H, Kjeldsen K.
    Journal: J Appl Physiol (1985); 1994 May; 76(5):2140-6. PubMed ID: 8063678.
    Abstract:
    As determined by vanadate-facilitated [3H]ouabain binding to intact samples, semistarvation and untreated streptozotocin- or partial pancreatectomy-induced diabetes reduced rat soleus muscle Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) concentration by 12-21% (P < 0.05). Conversely, insulin treatment of rats with streptozotocin-induced diabetes induced an increase of 18-26% above control (P < 0.05). Treadmill training diminished the reduction in muscle [3H]ouabain binding site concentration induced by untreated diabetes to only 2-5%. No significant variation was observed in rat cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P < 0.05), respectively, in patients with treated non-insulin-dependent diabetes mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes.
    [Abstract] [Full Text] [Related] [New Search]