These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, suppresses very low-density lipoprotein secretion in puromycin aminonucleoside-nephrotic rats.
    Author: Moritomo Y, Hirano T, Ebara T, Kurokawa M, Naito H, Furukawa S, Nagano S.
    Journal: Nephron; 1994; 67(2):218-25. PubMed ID: 8072613.
    Abstract:
    The effects of fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on the hyperlipidemia associated with nephrosis were studied. Nephrotic rats, induced by a single intraperitoneal injection of puromycin aminonucleoside (100 mg/kg body weight), had significantly higher plasma triglyceride (TG), total cholesterol and apoprotein (apo) B concentrations than controls. Fluvastatin was administrated as a 0.01% solution in drinking water for 14 days to either normal control or nephrotic rats. Concentrations of TG and apo B in plasma, and very low-density lipoprotein (VLDL) in nephrosis were completely normalized by the treatment with fluvastatin, but concentrations of cholesterol in plasma and each lipoprotein fraction were not altered by the treatment. The ratio of apo E to C in VLDL was significantly decreased in nephrotic rats, but the fluvastatin treatment increased this ratio. TG secretion rate estimated by the Triton WR1339 method was significantly increased in nephrotic rats, but was normalized by fluvastatin. Percent composition of TG in newly secreted VLDL particles in post-Triton plasma was not decreased by fluvastatin treatment, suggesting that the number of newly secreted VLDL particles was reduced by the treatment. Postheparin plasma lipolytic activities were not affected by the fluvastatin treatment. These results demonstrate that fluvastatin can effectively ameliorate the high concentration of VLDL by suppressing the hepatic secretion in nephrotic rats, and suggest that an inhibition of cholesterol biosynthesis suppresses VLDL secretion from the liver.
    [Abstract] [Full Text] [Related] [New Search]