These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibitors of sterol synthesis. Effects of fluorine substitution at carbon atom 25 of cholesterol on its spectral and chromatographic properties and on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells.
    Author: Wilson WK, Swaminathan S, Pinkerton FD, Gerst N, Schroepfer GJ.
    Journal: Steroids; 1994 May; 59(5):310-7. PubMed ID: 8073444.
    Abstract:
    25-Fluorocholesterol (III) was prepared by treatment of 25-hydroxycholesterol (IV) with hydrogen fluoride-pyridine. Compounds III, IV, and cholesterol (I) were fully characterized by 1H and 13C NMR, and stereochemical assignments were established for the C-22 and C-23 protons. The side-chain proton assignments, which apply to most other sterols with a saturated eight-carbon side chain, were based on conformational analysis and comparisons with NMR data for 25,26,26,26,27,27,27-heptafluorocholesterol (II). The chromatographic behavior of I, II, and III were compared on thin-layer chromatography, high performance liquid chromatography, and gas chromatography. Major fragment ions in electron-impact mass spectra of III were analogous to ions of either cholesterol or desmosterol, and a similar analogy was observed for the trimethylsilyl ethers. The 25-hydroxysterol IV and the 25-fluorosterol III differed markedly in their effects on the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells. Whereas 25-hydroxycholesterol caused a approximately 66% lowering of reductase activity in cells at 0.1 microM, the 25-fluorosterol III had no effect at this concentration.
    [Abstract] [Full Text] [Related] [New Search]