These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rational design of self-cleaving pre-tRNA-ribonuclease P RNA conjugates.
    Author: Frank DN, Harris ME, Pace NR.
    Journal: Biochemistry; 1994 Sep 06; 33(35):10800-8. PubMed ID: 8075082.
    Abstract:
    Ribonuclease P (RNaseP) generates the mature 5' end of tRNAs by removing 5'leader sequences from pre-tRNAs. In vitro, the RNA subunit is sufficient to catalyze this reaction and is therefore a ribozyme. The kinetic analysis of RNase P-mediated catalysis is complicated because product release is normally rate-limiting. Furthermore, the intermolecular nature of the cleavage reaction precludes many applications of in vitro selection schemes to the analysis of RNaseP. To examine and manipulate the RNase P function more effectively, we designed a pair of ribozymes in which the RNase P RNA is covalently linked to a pre-tRNA substrate. To facilitate intramolecular cleavage, pre-tRNA molecules were tethered to circulatory permuted RNaseP RNA molecules at nucleotides implicated in substrate binding. These "active-site-tethered" pre-tRNA-RNaseP RNA conjugates undergo accurate and efficient self-cleavage in vitro, with first-order reaction rates equivalent to the rate of the chemical step of the native RNase P reaction. Unlike most ribozymes, RNase P recognizes its substrate through tertiary RNA-RNA interactions, rather than through extensive Watson-Crick base-pairing. However, the development of the active-site-tethered conjugates has led us to create a sequence-specific endonuclease, termed Endo.P. In the Endo.P configuration, the 3'half of the pre-tRNA acceptor stem binds exogenous RNA substrates via Watson-Crick base-pairing; the bound substrate is subsequently cleaved at the predicted site. The demonstration of sequence-specific cleavage by Endo.P expands the potential of RNase P and its derivatives as reagents in gene therapy.
    [Abstract] [Full Text] [Related] [New Search]