These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 15-Hydroxyeicosatetraenoic acid inhibits neutrophil migration across cytokine-activated endothelium.
    Author: Takata S, Papayianni A, Matsubara M, Jimenez W, Pronovost PH, Brady HR.
    Journal: Am J Pathol; 1994 Sep; 145(3):541-9. PubMed ID: 8080039.
    Abstract:
    15-hydroxyeicosatetraenoic acid (15-HETE) is an eicosanoid, formed by the actions of 15-lipoxygenase, epoxygenases, and cyclooxygenases on arachidonic acid, whose tissue levels are often elevated during inflammation. The present study demonstrates that 15(S)-HETE is a potent inhibitor of polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium in vitro. 15(S)-HETE is rapidly esterified into PMN phospholipids, and we report that 15-(S)-HETE-remodeled PMN displayed blunted adhesion to, and migration across, human endothelial cells that had been activated with either interleukin-1 beta or tumor necrosis factor-alpha Several lines of evidence suggested that 15(S)-HETE inhibited PMN transmigration by attenuating PMN responsiveness to endothelial cell-derived platelet-activating factor (PAF). The inhibitory action of 15(S)-HETE on transmigration was not restricted by the profile of adhesion molecules expressed by cytokine-activated endothelium. Interleukin-1 beta and tumor necrosis factor-alpha induce PAF production by endothelium, and PMN migration across cytokine-activated endothelium was inhibited by a PAF receptor antagonist. PMN migration across endothelium in response to exogenous PAF was dramatically inhibited following exposure of PMN to 15(S)-HETE. Furthermore, 15(S)-HETE-remodeled PMN displayed impaired cytoskeletal and adhesion responses when stimulated by exogenous PAF, two pivotal events in PMN migration across activated endothelium. 15(S)-HETE seemed to attenuate PMN responsiveness to PAF by inhibiting membrane-associated signal transduction events. In keeping with this interpretation, remodeling of PMN phospholipids with 15(S)-HETE was associated with a sixfold reduction in the affinity of specific high-affinity PAF receptors for their ligand and impaired PAF-triggered IP3 generation. In contrast, PMN adhesion responses stimulated by calcium ionophore or activators of protein kinase C remained intact. These results provide further evidence that 15(S)-HETE may be an important endogenous inhibitor of PMN-endothelial cell interaction that serves to limit or reverse neutrophil-mediated inflammation in vivo.
    [Abstract] [Full Text] [Related] [New Search]