These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-resolution one- and two-dimensional 1H MRS of human brain tumor and normal glial cells.
    Author: Kotitschke K, Jung H, Nekolla S, Haase A, Bauer A, Bogdahn U.
    Journal: NMR Biomed; 1994 May; 7(3):111-20. PubMed ID: 8080712.
    Abstract:
    Astrocytoma (WHO grade II, III), glioblastoma, malignant melanoma, and normal glial cell cultures, established from biopsies, were investigated by 1H MRS. At a 1H resonance frequency of 500 MHz (11.75 T) a high spectral resolution was achieved in 1D 1H spectra; in conjunction with 2D shift-correlated (COSY) MRS, resonances of alanine, aspartate, choline, creatine, glutamate, glutamine, hypotaurine, myo-inositol, phosphocreatine, phosphoryl-ethanolamine, phosphoryl-choline, lactate, lysine, N-acetylaspartate, taurine, threonine and valine could be identified. T1 relaxation times for the most prominent compounds are presented. T1 values of lactate ranged between 450 ms and 850 ms. The intensity of the lactate signal revealed differences between individual spectra, but exhibited no correlation between different tumor specimens or degree of malignancy. It was shown that the lactate signal at 1.3 ppm is covered by peaks arising from threonine and fatty acids. The choline signal level varied among spectra of different tumors, among tumors with similar degree of malignancy, and within the same tumor. Further preliminary differences due to aspartate, inositol and glutamine/glutamate were found in 1D and 2D COSY spectra between normal glial cells as well as different tumors. These results indicate that some differences observed in in vivo spectra may be attributable to secondary macroscopic structural changes (hypoxia, necrosis) and not to tumor inherent characteristics. Further correlation between in vivo and in vitro spectroscopy is therefore required.
    [Abstract] [Full Text] [Related] [New Search]