These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of the distal nephron in the regulation of acid-base equilibrium by the kidney.
    Author: Malnic G, Fernandez R, Lopes MJ.
    Journal: Braz J Med Biol Res; 1994 Apr; 27(4):831-50. PubMed ID: 8087090.
    Abstract:
    The present paper reviews mechanisms by which the kidney controls systemic acid-base balance, with emphasis on the role of the distal nephron, and particularly of the cortical distal tubule. These mechanisms are essentially based on H-ion transport along the whole nephron. In proximal tubule cells, approximately 80% of H-ion secretion is mediated by Na+/H+ exchange, and 20% by H(+)-ATPase. In the distal nephron, acid-base transport mechanisms are located mainly in intercalated cells. H-ion secretion is effected by vacuolar H(+)-ATPase in alpha-intercalated cells and, in K-depleted animals, also by the gastric type H/K ATPase. In animals in alkalosis, beta-intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger, while a basolateral H-ATPase transfers H-ions into the interstitium. In cortical distal tubule, these mechanisms have been shown to be present in the intercalated cells of the connecting segment and of the initial collecting duct (the late distal tubule of micropuncture experiments). In the convoluted distal tubule (early distal tubule), most H-ion secretion occurs by means of the Na+/H+ exchanger. These data show that the distal nephron, including the cortical distal tubule, is a nephron segment responsible for a sizeable portion of bicarbonate reabsorption and titratable acid generation, as well as for bicarbonate secretion under appropriate metabolic conditions, being therefore the site of fine regulation of renal mechanisms that maintain acid-base homeostasis.
    [Abstract] [Full Text] [Related] [New Search]