These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytoskeleton and cell adhesion molecules: critical targets of toxic agents. Author: Reuhl KR, Lagunowich LA, Brown DL. Journal: Neurotoxicology; 1994; 15(1):133-45. PubMed ID: 8090353. Abstract: Normal development of the nervous system depends upon complex physical interactions between cells and their local environment. These interactions are mediated by several families of cell adhesion molecules (CAMs). Differential expression and function of CAMs are operative in neural tube formation, neuron migration, in post-migratory differentiation, and maintenance of mature neural structure. CAMs also facilitate contact-dependent cell processes, such as formation of cell junctions. Temporal regulation of these molecules during development may provide "windows of vulnerability" to toxicants. In addition to their extracellular binding activities, some CAMs have membrane-spanning domains by which they communicate directly with the cytoskeleton, permitting extracellular signals to be rapidly translated into cell responses via modifications in cytoskeletal organization. These cytologic changes are particularly critical during migration, neurite formation and synaptogenesis. Toxic perturbation of adhesion molecules can have catastrophic effects on morphogenetic processes both directly and via events which depend upon cytoskeletal rearrangement. Toxicants can also act directly upon the cytoskeleton, resulting secondarily in changes of the membrane distribution and function of CAMs. Toxicant-induced changes in CAMs and cytoskeleton may occur contemporaneously. Interference of cell adhesion-cytoskeleton interactions may be a pivotal molecular event dictating developmental consequences of neurotoxicant exposure.[Abstract] [Full Text] [Related] [New Search]