These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: IL-2 reduces graft-versus-host disease and preserves a graft-versus-leukemia effect by selectively inhibiting CD4+ T cell activity. Author: Sykes M, Abraham VS, Harty MW, Pearson DA. Journal: J Immunol; 1993 Jan 01; 150(1):197-205. PubMed ID: 8093257. Abstract: We have recently demonstrated, in a fully MHC-mismatched murine bone marrow transplantation model, that administration of a short course of high dose IL-2 markedly diminishes graft-vs-host disease (GVHD) without compromising alloengraftment or the graft-vs-leukemia (GVL) effect of allogeneic T cells. We have now evaluated the mechanism of the dissociation of GVL and GVHD observed in this model. We demonstrate that CD4+ T cells were required to produce severe, acute GVHD in the fully MHC-mismatched plus minor histocompatibility Ag-mismatched A/J-->B10 strain combination. The GVHD-producing activity of A/J CD4+ T cells administered without CD8+ T cells was inhibited by IL-2 treatment. In contrast, CD8+ T cells alone mediated the GVL effect observed in the EL4 leukemia/lymphoma model, and CD4+ cells did not contribute to this effect. This CD8-mediated GVL activity was not inhibited by IL-2 treatment. Because naive A/J CD8+ T cells administered without CD4+ T cells did not produce acute GVHD, we were unable to evaluate the effect of IL-2 in this model. However, when A/J donors were presensitized with B10 skin grafts, CD4-depleted A/J spleen cells were capable of causing acute GVHD in B10 recipients. This CD8-mediated GVHD was not inhibited by treatment with IL-2. However, IL-2 did partially inhibit the GVHD produced by nondepleted presensitized A/J spleen cells, probably due to selective inhibition of the function of presensitized A/J CD4+ T cells. The dissociation of GVHD and GVL against the EL4 leukemia/lymphoma in IL-2-treated mice can therefore be explained by selective inhibition by IL-2 of CD4 activity.[Abstract] [Full Text] [Related] [New Search]