These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The conservative substitution Asp-645-->Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Author: Hermans MM, de Graaff E, Kroos MA, Wisselaar HA, Willemsen R, Oostra BA, Reuser AJ. Journal: Biochem J; 1993 Feb 01; 289 ( Pt 3)(Pt 3):687-93. PubMed ID: 8094613. Abstract: Glycogen-storage disease type II (GSDII) is caused by the deficiency of lysosomal alpha-glucosidase (acid maltase). This paper reports on the analysis of the mutant alleles in an American black patient with an adult form of GSDII (GM1935). The lysosomal alpha-glucosidase precursor of this patient has abnormal molecular features: (i) the molecular mass is decreased, (ii) the phosphorylation is deficient and (iii) the proteolytic processing is impaired. Sequence analysis revealed four mutations leading to amino acid alterations: Asp-645-->Glu, Val-816-->Ile, Arg-854-->Stop and Thr-927-->Ile. By using allele-specific oligonucleotide hybridization on PCR-amplified cDNA we have demonstrated that the Arg-854-->Stop mutation is located in one allele that is not expressed, and that the other allele contains the remaining three mutations. Each of the mutations was introduced in wild-type cDNA and expressed in COS cells to analyse the effect on biosynthesis, transport and phosphorylation of lysosomal alpha-glucosidase. The Val-816-->Ile substitution appeared to have no significant effect in contrast with results [Martiniuk, Mehler, Bodkin, Tzall, Hirshhorn, Zhong and Hirschhorn (1991) DNA Cell Biol. 10, 681-687] and was therefore defined as a polymorphism. The Thr-927-->Ile substitution deleting one of the seven glycosylation sites was found to be responsible for the decrease in molecular-mass, but not for the deficient proteolytic processing and phosphorylation. It did not cause the enzyme deficiency either. The third mutation leading to the Asp-645-->Glu substitution was proven to account in full for the observed defects in transport, phosphorylation and proteolytic processing of the newly synthesized alpha-glucosidase precursor of the patient.[Abstract] [Full Text] [Related] [New Search]