These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and gamma-vinyl-gamma-aminobutyric acid (gamma-vinyl GABA) alter neurotransmitter concentrations in the nervous tissue of the goldfish (Carassius auratus) but not the cockroach (Periplaneta americana).
    Author: Sloley BD, McKenna KF.
    Journal: Neurochem Int; 1993 Feb; 22(2):197-203. PubMed ID: 8094992.
    Abstract:
    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium iodide (MPP+) and gamma-vinyl-gamma-aminobutyric acid (gamma-vinyl GABA) are drugs demonstrated to alter catecholamine or gamma-aminobutyric acid (GABA) concentrations in vertebrate nervous tissue. MPTP and MPP+, which are potent and selective vertebrate neurotoxins, are effective in depleting noradrenaline and dopamine concentrations in goldfish. However, only MPP+ depletes dopamine in the central nervous tissues of the cockroach, and only when injected directly into the nervous tissue. Systemic injection of gamma-vinyl GABA, a selective GABA transaminase inhibitor in vertebrates, increases GABA concentrations in goldfish but not cockroach nervous tissue. Incubations of both goldfish hypothalamus and cockroach nervous tissue demonstrated the presence of GABA transaminase activity in vitro. However, the GABA transaminase activity obtained from goldfish tissues was much more sensitive to inhibition by gamma-vinyl GABA than that obtained from cockroach nervous tissue. These results demonstrate that MPTP, MPP+ and gamma-vinyl GABA are useful pharmacological tools which can alter neurotransmitter concentrations in a lower vertebrate. Unfortunately, they possess limited effectiveness in the cockroach.
    [Abstract] [Full Text] [Related] [New Search]