These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolic inversion of (R)-ibuprofen. Formation of ibuprofenyl-coenzyme A. Author: Tracy TS, Wirthwein DP, Hall SD. Journal: Drug Metab Dispos; 1993; 21(1):114-20. PubMed ID: 8095203. Abstract: Ibuprofen [(racemic)2-(4-isobutylphenyl)propionic acid] undergoes metabolic inversion via formation, epimerization, and hydrolysis of the coenzyme A (CoA) thioester, ibuprofenyl-CoA. In this study, (R)-ibuprofen was incubated with either rat whole liver homogenate, human whole liver homogenate, rat liver mitochondria, or rat liver microsomes, and the formation of ibuprofenyl-CoA measured. Rat whole liver homogenate (Vmax/KM = 0.022 +/- 0.005 ml/min/mg protein) was approximately 4-fold more efficient at forming ibuprofenyl-CoA than human whole liver homogenate (Vmax/KM, = 0.005 +/- 0.004 ml/min/mg protein). Rat liver microsomes (Vmax/KM = 0.047 +/- 0.019 ml/min/mg protein) were approximately 2-fold more efficient than rat whole liver homogenate at forming ibuprofenyl-CoA, whereas rat liver mitochondria (Vmax/KM = 0.027 +/- 0.017 ml/min/mg protein) did not differ from whole liver homogenate. Palmitic (Ki = 0.005 mM) and octanoic acids (Ki = 0.19 mM) were capable of inhibiting ibuprofenyl-CoA formation, whereas propionic acid had no effect, suggesting the possible involvement of both long- and medium-chain fatty acyl-CoA synthetases. Of the xenobiotics tested, only bezafibrate (Ki = 0.85 mM) and (S)-ibuprofen (Ki = 0.095 mM in rats, 0.32 mM in human tissue) were capable of substantially inhibiting ibuprofenyl-CoA formation. Thus, it appears that the metabolic inversion of ibuprofen involves lipid-metabolizing pathways and may be affected by fatty acids or xenobiotics.[Abstract] [Full Text] [Related] [New Search]