These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monosynaptic GABA-mediated inhibitory postsynaptic potentials in CA1 pyramidal cells of hyperexcitable hippocampal slices from kainic acid-treated rats.
    Author: Williams S, Vachon P, Lacaille JC.
    Journal: Neuroscience; 1993 Feb; 52(3):541-54. PubMed ID: 8095707.
    Abstract:
    To examine the mechanisms underlying chronic epileptiform activity, field potentials were first recorded to identify hyperexcitable hippocampal slices from kainic acid-treated rats. Intracellular recordings were then obtained from CA1 pyramidal cells in the hyperexcitable areas. Twenty-two of the 47 cells responded to electrical stimulation of the stratum radiatum with a burst of two or more action potentials and reduced early inhibitory postsynaptic potentials, and were considered hyperexcitable. The remaining 25 cells were not hyperexcitable, displaying a single action potential and biphasic inhibitory postsynaptic potentials after stimulation, like control cells (n = 20). A long duration, voltage-sensitive component was associated with subthreshold excitatory postsynaptic potentials in the majority of hyperexcitable (12/15) and non-hyperexcitable (3/5) cells examined from kainic acid-treated animals, but not from cells (1/10) of control animals. Stimulation of stratum radiatum during pharmacological blockade of ionotropic excitatory amino acid synaptic transmission elicited biphasic monosynaptic inhibitory postsynaptic potentials in all hyperexcitable (n = 9) and non-hyperexcitable (n = 9) cells tested from kainate-treated animals, as well as in control cells (n = 8). The mean amplitude, latency to peak, equilibrium potential, and conductance changes of early and late monosynaptic inhibitory postsynaptic potentials were not different between cells of kainic acid-treated and control animals. In seven hyperexcitable cells tested, the early component of monosynaptic inhibitory postsynaptic potentials was significantly reduced by the GABAA receptor antagonist bicuculline (100-200 microM). The late component was significantly decreased by the GABAB receptor antagonist 2-hydroxysaclofen (1-2 mM; n = 3). Comparable effects were observed on early and late monosynaptic inhibitory postsynaptic potentials in non-hyperexcitable cells (n = 4) from kainic acid-treated animals and control cells (n = 5). These results suggest that GABAergic synapses on hyperexcitable hippocampal pyramidal cells of kainate-treated rats are intact and functional. Therefore, epileptiform activity in the kainate-lesioned hippocampus may not arise from a disconnection of GABAergic synapses made by inhibitory interneurons on pyramidal cells. The hyperexcitability may be due to underactivation of inhibitory interneurons and/or reorganization of excitatory inputs to pyramidal cells since, in kainate-treated animals, pyramidal cells appear to express additional excitatory mechanisms.
    [Abstract] [Full Text] [Related] [New Search]