These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transmitter release and calcium currents at an Aplysia buccal ganglion synapse--II. Modulation by presynaptic receptors. Author: Baux G, Fossier P, Trudeau LE, Tauc L. Journal: Neuroscience; 1993 Mar; 53(2):581-93. PubMed ID: 8098518. Abstract: Changes in evoked acetylcholine quantal release induced by histamine, FLRFamide and buccalin were investigated at an identified neuro-neuronal synapse in the buccal ganglion of Aplysia californica. Regulation of acetylcholine release by these neuromodulators was correlated with their actions on the presynaptic Ca2+ current. We have previously reported that FLRFamide and histamine, respectively, increase and decrease acetylcholine release from buccal neurons B4/B5. Buccalin, a peptide specific to the buccal ganglion, lowered the number of acetylcholine quanta released. Consistent with the synaptic effects, the presynaptic nifedipine-resistant Ca2+ current that triggers the release of acetylcholine in B4/B5 neurons [Trudeau L.-E. et al. (1993) Neuroscience 53, 571-580] was lowered by buccalin or by histamine and enhanced by FLRFamide. The analysis of tail currents showed that histamine shifts the voltage dependence of the nifedipine-resistant Ca2+ channels towards more positive voltages, whereas FLRFamide has an opposite action. Buccalin did not affect the voltage dependence of the channels but depressed the amplitude of the Ca2+ current, an effect which could be due either to a reduction of the number of available Ca2+ channels, to a decrease of their unitary conductance or to a modification of their gating. Inactivation of presynaptic G proteins prevented the modulatory actions of FLRFamide and histamine on quantal acetylcholine release and also on the voltage dependence of the nifedipine-resistant Ca2+ channels. This procedure, however, failed to prevent the suppressive effects of buccalin. The possibility of relating the voltage dependence shifts of the Ca2+ current induced by FLRFamide and histamine to the phosphorylation state of the Ca2+ channels is discussed. It is concluded that three independent presynaptic pathways initiated by histamine, FLRFamide and buccalin control presynaptic Ca2+ influx, these modulations being apparent within the physiological range of voltages required to activate Ca2+ channels.[Abstract] [Full Text] [Related] [New Search]