These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential neural regulation of circulating somatostatin-14 and somatostatin-28 in conscious dogs.
    Author: Greenberg GR.
    Journal: Am J Physiol; 1993 May; 264(5 Pt 1):G902-9. PubMed ID: 8098911.
    Abstract:
    Somatostatin-like immunoreactivity (SLI) released into the circulation after nutrients or secretagogues is heterogeneous. To determine whether similar neural pathways regulate secretion of SLI molecular forms, circulating somatostatin-28 (S-28) and somatostatin-14 (S-14) responses to ingestion of a solid meal, intraduodenal perfusion of a liquid defined formula meal, and intravenous infusion of cholecystokinin octapeptide (CCK-OP, 250 pmol.kg-1.h-1) were measured in four conscious dogs with and without cryogenic blockade of the cervical vagus nerves. SLI was separated by gel-filtration chromatography of extracted, acidified plasma and quantified by radioimmunoassay. Basal plasma concentrations of S-28 were 4.1 +/- 0.6 fmol/ml and of S-14 were 3.8 +/- 0.4 fmol/ml. Ingestion of the solid meal increased plasma SLI threefold, and elevations of S-28 and S-14 were equivalent. After the intraduodenal liquid meal or infusion of CCK-OP, plasma SLI rose twofold, but increments of S-28 exceeded S-14, comprising approximately 70% of SLI released. Vagal blockade by cooling reversibly inhibited both the S-28 and S-14 responses to the solid meal, intraduodenal liquid meal, and CCK-OP. In contrast, atropine (50 micrograms/kg iv), given after solid food, intraduodenal nutrients, and CCK-OP, suppressed S-28 but further increased S-14 responses. Atropine did not, however, alter the suppression of S-14 and S-28 by vagal cooling.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]