These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of the hypolipidemic effect of fish oil by inhibition of adipose tissue lipolysis with acipimox, a nicotinic acid analog.
    Author: Seböková E, Klimes I, Hermann M, Minchenko A, Mitková A, Hromadová M.
    Journal: Ann N Y Acad Sci; 1993 Jun 14; 683():183-91. PubMed ID: 8102515.
    Abstract:
    To assess the possible benefits of combined hypolipidemic therapy (acipimox+marine fish oil) on lipid and lipoprotein metabolism, male Wistar rats were fed for 14 days a high sucrose diet (70 cal% sucrose) alone or a high sucrose diet supplemented with acipimox (0.2 g/100 g diet) and/or fish oil (1 ml orally daily; 30 wt% of n-3 PUFA). Feeding a high sucrose diet increased (control: 61 +/- 6 vs HS: 110 +/- 8 nmol.min-1.mg-1, p < 0.001) the activity of acetyl CoA carboxylase in the liver, this was normalized by fish oil but not acipimox alone (HS+FO: 68 +/- 4; HS+ACI: 95 +/- 4; HS+ACI+FO: 71 +/- 2 nmol.min-1.mg-1). Increased triglyceride concentration in serum and muscle tissue (m. soleus and heart) of high sucrose-fed animals was suppressed equally by fish oil, acipimox, and/or both. The cholesterol-lowering effect of fish oil was also present in the liver (p < 0.005). The cholesterol-lowering action of acipimox was accompanied by the accumulation of cholesterol in the liver (p < 0.005), whereas the combination of acipimox+fish oil did not change the liver cholesterol content. After fish oil the LDL binding capacity of liver plasma membranes was increased 1.6-fold (p < 0.001). LDL receptor activity was significantly decreased in HS+ACI group (p < 0.05), but remained unchanged in HS+FO+ACI-fed animals. In summary, (a) the hypotriglyceridemic effect of fish oil in high sucrose-induced HTG is due to its inhibitory effects at the level of fatty acid synthesis; (b) decreased triglyceride production and output from the liver prevent triglyceride accumulation in muscle tissue; (c) the cholesterol-lowering action of acipimox but not fish oil was accompanied by an accumulation of cholesterol in the liver; (d) the latter phenomenon may be due to the opposite effects of both drugs on cholesterol catabolism via hepatic LDL receptors.
    [Abstract] [Full Text] [Related] [New Search]