These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and pharmacological evaluation of 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes as ligands for a novel receptor with sigma-like neuromodulatory activity. Author: Wyrick SD, Booth RG, Myers AM, Owens CE, Kula NS, Baldessarini RJ, McPhail AT, Mailman RB. Journal: J Med Chem; 1993 Aug 20; 36(17):2542-51. PubMed ID: 8102651. Abstract: Certain novel 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes (1-phenyl-3-aminotetralins, PATs) produced stimulation (ca. 30% above basal levels) of tyrosine hydroxylase (TH) activity at 0.1 microM concentrations in rodent brain tissue. This effect on TH was blocked by the putative sigma-receptor antagonist BMY-14802, suggesting involvement of a novel neuromodulatory sigma-like receptor. Within the new phenylaminotetralin series, a correlation was found between the ability to stimulate TH and the potency to compete for binding sites labeled by (+/-)-[3H]1-phenyl-3-(N,N-dimethylamino)-6-chloro-7-hydroxy-1,2,3,4- tetrahydronaphthalene ([3H](+/-)-4). trans-Catechol analogs had low affinity for [3H]4 sites, and although they inhibited TH activity, this effect was not blocked by known sigma or dopamine antagonists. Analogs with dihydroxy substituents (catechols), as well as nitrogen substituents larger than methyl, had little affinity for [3H]4 binding sites and did not significantly affect TH activity. The pharmacology of the [3H]4 binding site is unique from that of any known sigma or dopamine receptor, thus the effects appear to be mediated by a previously uncharacterized binding site/receptor. The site has stereoselectivity for the (1R,3S)-(-)-isomer of 1-phenyl-3-(N,N-dimethylamino)-1,2,3,4-tetrahydronaphthalene; this isomer is also more active at stimulating TH. Thus, certain 1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes appear to be selective probes of a novel receptor type that mediates sigma-like neuromodulatory activity and may have pharmacotherapeutic utility in conditions in which modulation of dopamine function is important.[Abstract] [Full Text] [Related] [New Search]