These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell cycle dependent distribution of proliferating cell nuclear antigen/cyclin and cdc2-kinase in mouse T-lymphoma cells. Author: Brott DA, Alvey JD, Bleavins MR, de la Iglesia FA, Lalwani ND. Journal: J Cell Biochem; 1993 Jul; 52(3):362-72. PubMed ID: 8103524. Abstract: The aim of the present study was to investigate bromodeoxyuridine (BrdU) uptake and coordinated distribution of proliferating cell nuclear antigen (PCNA) and p34-cdc2-kinase, two important proteins involved in cell cycle regulation and progression. Flow cytometric analysis of marker proteins in freshly plated mouse T-lymphoma cells (Yac-1 cells), using fluorescein isothiocyanate (FITC)-labeled specific antibodies, showed PCNA distributed throughout the cell cycle with increased intensity in S-phase. PCNA is essential for cells to cycle through S-phase and its synthesis is initiated during late G1-phase before incorporation of BrdU and remains high during active DNA replication. The intensity of PCNA fluorescence increases with the duration of incubation after plating. The cdc2-kinase was detectable in all phases of the cell cycle and the G2-M-phase appears to have the maximum concentrations. The cell cycle analysis of high dose colcemid (2 micrograms/ml) treated Yac-1 cells showed an aneuploid or hypodiploid population. Although the G2-M-phase seems to be the dominating population in aneuploid cells, the concentrations of cdc2-kinase were variable in this phase of cell cycle. The colcemid treatment at 25 ng/ml arrested 96% of cells in S-phase and G2-M-phase, but PCNA expression was evident in a portion of the cell population in G2-M-phase. Although cells blocked in M-phase seem to have high levels of cdc2-kinase, colcemid renders them inactive. From these data, it appears that the down regulation and/or inactivation of cdc2-kinase could be responsible for the colcemid arrest of cells in M-phase.[Abstract] [Full Text] [Related] [New Search]