These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antagonism of a (+)N-allylnormetazocine stimulus by (-)PPAP and several structurally related analogs.
    Author: Glennon RA, Young R, Herndon JL.
    Journal: Pharmacol Biochem Behav; 1993 Aug; 45(4):865-9. PubMed ID: 8105490.
    Abstract:
    Employing rats trained to discriminate 5 mg/kg of the benzomorphan opioid (+)N-allylnormetazocine [(+)NANM] from vehicle, tests of stimulus generalization and antagonism were conducted to determine the influence of several potential sigma-receptor ligands. It has been previously suggested that the (+)NANM stimulus may involve concurrent action at sigma- and phencyclidine (PCP) receptors. Although the low-affinity sigma-antagonist rimcazole was without stimulus-attenuating effect, three novel sigma-ligands--(-)PPAP, CNS 3018, and CNS 3093 (ID50 doses = 3.2, 6.7, and 4.5 mg/kg, respectively)--antagonized the (+)NANM stimulus in a dose-related fashion. The nonselective serotonergic agent 1-(3-trifluoromethyl)phenylpiperazine (TFMPP) produced partial generalization in (+)NANM-trained animals whereas buspirone, a 5-hydroxytryptamine1A (5-HT1A) agonist, attenuated (to 27% drug-appropriate responding) the (+)NANM stimulus. Because the prototypic 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) failed to attenuate the (+)NANM stimulus at pharmacologically relevant doses, it seems unlikely that the (+)NANM stimulus involves a 5-HT1A mechanism. TFMPP and buspirone display modest affinity for sigma-receptors and this may account for the present findings with these agents. The present results neither establish a role for sigma involvement in the stimulus properties of (+)NANM nor eliminate a role for PCP receptors. They do, however, demonstrate that sigma-ligands with little to no affinity for PCP receptors are capable of antagonizing the (+)NANM stimulus.
    [Abstract] [Full Text] [Related] [New Search]