These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. Author: Nairn RS, Adair GM, Porter T, Pennington SL, Smith DG, Wilson JH, Seidman MM. Journal: Somat Cell Mol Genet; 1993 Jul; 19(4):363-75. PubMed ID: 8105543. Abstract: A 21-bp deletion in the third exon of the APRT gene in Chinese hamster ovary (CHO) cells was corrected by transfection with a plasmid containing hamster APRT sequences. Targeted correction frequencies in the range of 0.3-3.0 x 10(-6) were obtained with a vector containing 3.2 kb of APRT sequence homology. To examine the influence of vector configuration on targeted gene correction, a double-strand break was introduced at one of two positions in the vector prior to transfection by calcium phosphate-DNA coprecipitation or electroporation. A double-strand break in the region of APRT homology contained in the vector produced an insertion-type vector, while placement of the break just outside the region of homology produced a replacement-type vector. Gene targeting with both linear vector configurations yielded equivalent ratios of targeted recombinants to nontargeted vector integrants; however, targeting with the two different vector configurations resulted in different distributions of targeted recombination products. Analysis of 66 independent APRT+ recombinant clones by Southern hybridization showed that targeting with the vector in a replacement-type configuration yielded fewer targeted integrants and more target gene convertants than did the integration vector configuration. Targeted recombination was about fivefold more efficient with electroporation than with calcium phosphate-DNA coprecipitation; however, both gene transfer methods produced similar distributions of targeted recombinants, which depended only on targeting vector configuration. Our results demonstrate that insertion-type and replacement-type gene targeting vectors produce similar overall targeting frequencies in gene correction experiments, but that vector configuration can significantly influence the yield of particular recombinant types.[Abstract] [Full Text] [Related] [New Search]