These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanical and electrophysiological studies on the positive inotropic effect of 2-phenyl-4-oxo-hydroquinoline in rat cardiac tissues. Author: Su MJ, Chang GJ, Kuo SC. Journal: Br J Pharmacol; 1993 Sep; 110(1):310-6. PubMed ID: 8106106. Abstract: 1. The pharmacological and electrophysiological effect of 2-phenyl-4-oxo-hydroquinoline (YT-1), a new synthetic agent, were determined in rat isolated cardiac tissues and ventricular myocytes. 2. YT-1 was found to have a positive inotropic effect in both atria and ventricular muscles but did not cause significant increases in the spontaneously beating rate of right atria. 3. The positive inotropic effect of YT-1 was antagonized neither by beta-nor by alpha-adrenoceptor antagonists but was partially antagonized by a Ca2+ channel blocker (verapamil) and a K+ channel blocker (4-AP). 4. The action potential duration and amplitude of ventricular cells were progressively increased as the concentration of YT-1 was increased from 3 to 30 microM. 5. A voltage clamp study revealed that the prolongation of action potential duration by YT-1 was associated with a prominent inhibition of 4-AP-sensitive transient outward current (I(to)). At potentials negative to the reversal potential of K1-channels, the inward current through these channels was partially reduced by YT-1. At potentials positive to the reversal potential, the outward current through these channels was affected very little. 6. Although YT-1 blocked the amplitude of I(to), the voltage-dependence of the steady-state inactivation of I(to), was unaffected. 7. Apart from the inhibition of K+ currents, YT-1 also inhibited the sodium inward current. 8. The evidence suggests that YT-1 increases the slow inward Ca2+ current (ICa) significantly. 9. It is concluded that the positive inotropic effect of YT-1 is due predominantly to the increase of ICa and inhibition of I(to).[Abstract] [Full Text] [Related] [New Search]