These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: cDNA cloning and expression of rat and human protein geranylgeranyltransferase type-I. Author: Zhang FL, Diehl RE, Kohl NE, Gibbs JB, Giros B, Casey PJ, Omer CA. Journal: J Biol Chem; 1994 Feb 04; 269(5):3175-80. PubMed ID: 8106351. Abstract: Protein geranylgeranyltransferase type-I (GGTase-I) transfers a geranylgeranyl group to the cysteine residue of candidate proteins containing a carboxyl-terminal CAAX (C, cysteine; A, aliphatic amino acid; X, any amino acid) motif in which the "X" residue is leucine. The enzyme is composed of a 48-kilodalton alpha subunit and a 43-kilodalton beta subunit. Peptides isolated from the alpha subunit of GGTase-I were shown to be identical with the alpha subunit of a related enzyme, protein farnesyltransferase. Overlapping cDNA clones containing the complete coding sequence for the beta subunit of GGTase-I were obtained from rat and human cDNA libraries. The cDNA clones from both species each predicted a protein of 377 amino acids with molecular masses of 42.4 kilodaltons (human) and 42.5 kilodaltons (rat). Amino acid sequence comparison suggests that the protein encoded by the Saccharomyces cerevisiae gene CDC43 is the yeast counterpart of the mammalian GGTase-I beta subunit. Co-expression of the GGTase-I beta subunit cDNA together with the alpha subunit of protein farnesyltransferase in Escherichia coli produced recombinant GGTase-I with electrophoretic and enzymatic properties indistinguishable from native GGTase-I.[Abstract] [Full Text] [Related] [New Search]