These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. Author: Kofuji P, Lederer WJ, Schulze DH. Journal: J Biol Chem; 1994 Feb 18; 269(7):5145-9. PubMed ID: 8106495. Abstract: We have analyzed the gene structure that gives rise to tissue-specific isoforms of the Na/Ca exchanger. Five distinct isoforms of the Na/Ca exchanger from rabbit brain, kidney, and heart have been identified previously to which we now add a new brain isoform. Reverse-transcribed polymerase chain reaction, library screening, and sequence analysis of cDNA coding regions indicate that the only significant alteration of the Na/Ca exchanger cDNA in rabbit brain, kidney, and heart isoforms is located in the carboxyl end of the putative intracellular loop of the protein, a region recently linked to ionic and metabolic regulation of the Na/Ca exchanger. Additionally, we find that the Na/Ca exchanger isoforms found in lung and skeletal muscle may arise from among these same six isoforms. Examination of the gene structure of the Na/Ca exchanger in rabbit indicates how the single gene that encodes for the Na/Ca exchanger is alternatively spliced to give rise to the five rabbit isoforms. Specifically, sequence analysis of the intron-exon boundaries reveals the presence of two "mutually exclusive" exons in conjunction with four "cassette" exons in the region of the Na/Ca exchanger gene that codes for the carboxyl end of the predicted intracellular loop region. This unusual arrangement of exons in the Na/Ca exchanger gene could allow for the generation of up to 32 different Na/Ca exchanger mRNAs and accounts for the isoforms identified to date.[Abstract] [Full Text] [Related] [New Search]