These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Contacts between regenerating axons and the Schwann cells of sciatic nerve segments grafted to the optic nerve of adult rats. Author: Dezawa M, Nagano T. Journal: J Neurocytol; 1993 Dec; 22(12):1103-12. PubMed ID: 8106882. Abstract: The relation between Schwann cells, basal laminae and axons during retinal ganglion cell regeneration was studied by using cellular, acellular and partially acellular sciatic nerve autografts into the optic nerve. Acellular grafts were achieved by temporary compression which eliminates living Schwann cells and axons. The compressed sciatic nerve together with the intact portion was used as a partially acellular graft. The compressed portion was anastomosed to the optic nerve and the intact portion was situated distally. After 3-21 days post-operation, the grafts were studied by thin sectioning and freeze-fracture. Axons were seen to regenerate into cellular grafts in contact with Schwann cells after one week, but not into acellular grafts for the entire period. In the partially acellular grafts, regenerating axons were first observed after two weeks and were always in contact with Schwann cells migrating from the intact portion. Moreover, membrane specializations, fuzzy materials in the space between apposed membranes, and putative tight junctions, were found between regenerated axons including growth cone and Schwann cells, and between adjoining Schwann cells. An extensive meshwork of putative tight junctions was displayed between reforming perineurial cells surrounding the groups of Schwann cells and associated axons. Gap junctions were seen between adjoining Schwann cells, and between reforming perineurial cells. These results suggest that the axonal contact with Schwann cell surfaces plays an important role in retinal ganglion cell regeneration.[Abstract] [Full Text] [Related] [New Search]