These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth and degeneration of axons on astrocyte surfaces: effects on extracellular matrix and on later axonal growth. Author: Ard MD, Schachner M, Rapp JT, Faissner A. Journal: Glia; 1993 Dec; 9(4):248-59. PubMed ID: 8112818. Abstract: Cultured astrocytes deposit an extracellular matrix which has been shown by immunocytochemistry to react with antibodies to tenascin, laminin, and fibronectin. Neuronal-glial interaction down-regulates these components of the matrix, causing a reduction in extracellular matrix localized to areas of contact with axons. Axons used for these experiments were from embryonic rat retinal explants. In some experiments explants were removed from the co-cultures and their axons allowed to degenerate. Degeneration of axons did not reverse the local reduction of extracellular matrix brought about by axon outgrowth. The period of axon outgrowth studied was 4-5 days; the period of degeneration was 2-3 days. Astrocytes alone, astrocytes with intact retinal explants, and astrocytes with 2-day degenerated retinal axons were tested for their ability to support neurite outgrowth from embryonic rat cortical neurons. Neurite outgrowth occurred on all astrocyte cultures. Cortical neurite lengths, measured 2 days after plating, were not significantly different between astrocytes alone and astrocytes with degenerated retinal axons. However, there was a tendency for neurites to be shorter on astrocytes with intact retinal axons present. Two conclusions may be drawn from these results. First, the state of differentiation of astrocytes, as marked by their assembly of extracellular matrix, is altered by contact with axons. Second, degeneration of axons alone, in the absence of other cell types, is not a sufficient signal to reestablish assembly of extracellular matrix. However, neither is it a sufficient signal to render astrocytes inhospitable to further axonal outgrowth or regeneration.[Abstract] [Full Text] [Related] [New Search]