These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for the intraluminal positioning of p-nitrophenol UDP-glucuronosyltransferase activity in rat liver microsomal vesicles.
    Author: Fulceri R, Bánhegyi G, Gamberucci A, Giunti R, Mandl J, Benedetti A.
    Journal: Arch Biochem Biophys; 1994 Feb 15; 309(1):43-6. PubMed ID: 8117111.
    Abstract:
    Addition of p-nitrophenol and UDP-glucuronic acid to rat hepatic microsomes enhanced the MgATP-stimulated Ca2+ sequestration. This stimulatory effect was more explicit in the presence of the activator of glucuronidation, UDP-N-acetylglucosamine. The stimulation of Ca2+ uptake was dependent on the p-nitrophenol concentration and showed a good correlation with the rate of p-nitrophenol glucuronidation. The stimulation of Ca2+ sequestration was probably due to its coaccumulation with the intraluminar Pi originated during glucuronidation. The increase in extravesicular osmolarity due to the addition of UDP-glucuronic acid to microsomes resuspended in an hyposmotic medium caused a rapid and prolonged shrinking as revealed by light-scattering measurements. This indicates a poor permeability of microsomal membrane to UDP-glucuronic acid. The subsequent addition of the pore-forming compound alamethicin resulted in an immediate swelling of vesicles indicating a rapid entry of UDP-glucuronic acid. Alamethicin also caused an about 15-fold increase in p-nitrophenol UDP-glucuronosyltransferase activity. These results support the hypothesis of the intravesicular compartmentation of the microsomal UDP-glucuronosyltransferase catalytic site.
    [Abstract] [Full Text] [Related] [New Search]