These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat.
    Author: Carlson JN, Fitzgerald LW, Keller RW, Glick SD.
    Journal: Brain Res; 1993 Dec 10; 630(1-2):178-87. PubMed ID: 8118684.
    Abstract:
    Exposure to stressors that are not controlled results in a variety of changes in behavior and in brain chemistry. Among these is the activation of dopamine-containing neuronal systems projecting to the medial prefrontal cortex (PFC), to a lesser extent the nucleus accumbens (NAC) and, in a few studies, the striatum. Previous data have shown that stressor evoked PFC activation is asymmetrical. The present experiments were designed to assess the effects of controlled and uncontrolled stressors on these DA systems using the procedures of the learned helplessness (LH) model. In a first experiment, 80 trials of either a controllable (ESC) or identical uncontrollable footshock stressor (YOK) caused an activation, as indicated by increased metabolite concentrations of DA in the PFC, NAC and striatum. In the PFC, YOK caused a bilateral DA depletion, relative to ESC and control animals, and a right > left increase in DOPAC/DA which was not seen in ESC animals. These findings suggested a preferential effect of YOK in the right PFC. A second experiment used rats that had been grouped according to their turning behavior, YOK right-biased rats showed an increase in DOPAC on the right side of the PFC and YOK left-biased rats displayed a similar increase on the left side in response to a brief (5 min) controllable footshock stressor. Since right-turning rats had been shown to be more sensitive to a LH behavioral phenomenon, the data suggested that right PFC activation is responsible for the greater LH sensitivity. A final experiment evaluated the neurochemical and behavioral responses to a prolonged footshock stressor 24 h after uncontrolled footshock. Right-biased YOK animals displayed depressed footshock escape behavior and a right > left depletion in PFC DA and HVA. Across-groups footshock escape performance was correlated with DA and HVA concentrations on the right but not on the left side of the PFC. Thus a disturbance of right PFC DA utilization was again associated with compromised coping behavior. The data suggest that the inability to control a stressor causes a lateralized alteration of PFC DA and this results in a disruption of the ability to respond to a new stressor. These findings indicate that the two sides of the PFC are differentially specialized for responding to a stressor.
    [Abstract] [Full Text] [Related] [New Search]