These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Regulation mechanism of melatonin rhythm in the pineal gland by light: experimental studies by in vivo microdialysis]. Author: Kanematsu N. Journal: Hokkaido Igaku Zasshi; 1994 Jan; 69(1):46-64. PubMed ID: 8119657. Abstract: Light has dual effects on the pineal melatonin; one is the entrainment of the circadian rhythm and the other is suppression of the melatonin synthesis. It is not known whether the entraining and suppressing effects of light are mediated by the same pathway or not. To elucidate the mechanism of the dual effects of light, (1) the sensitivity of the retina, (2) effects of acetylcholine agonist and, (3) the arrhythmicity induced by longterm continuous light, were studied by measuring melatonin continuously from a single rat by means of in vivo microdialysis. Pineal melatonin was suppressed by light more strongly at the late dark phase than at midnight, and by green light (520nm) than by red light (660nm). Pineal melatonin measured by microdialysis was decreased rapidly by a short light exposure and the melatonin rhythm was shifted on the following days. Microinjection of cholinergic agonist, carbachol, into the suprachiasmatic nucleus neither suppressed nor entrained the pineal melatonin rhythm. Immediately after the blinding, rats showed the circadian rhythm in pineal melatonin which had been abolished under long-term continuous light. While, it took several days for the locomotor rhythm to reappear. It is concluded that, (1) suppression of the pineal melatonin by light depends on the circadian phase and on the wavelength of light, (2) the threshold for light suppression is lower than that for phase-shift, (3) the melatonin rhythm starts to phase-shift on the following day of light pulse. (4) Acetylcholine is unlikely to be involved in the photic transmission both to the circadian clock and to the pineal, (5) arrhythmicity induced by long-term continuous light seems to be due to masking for the melatonin rhythm, and to uncoupling from the clock for the locomotor rhythm.[Abstract] [Full Text] [Related] [New Search]