These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of rat liver CTP:phosphocholine cytidylyltransferase accelerates phosphatidylcholine synthesis and degradation.
    Author: Walkey CJ, Kalmar GB, Cornell RB.
    Journal: J Biol Chem; 1994 Feb 25; 269(8):5742-9. PubMed ID: 8119913.
    Abstract:
    Two rat liver cDNAs encoding CTP:phosphocholine cytidylyltransferase (CT-1 and CT-2) were expressed in COS cells. The specific activity of CT in the microsomes increased approximately 20- or 100-fold after transfection with CT-1 or CT-2, respectively, but there was only a 3-5 fold increase in the rate of [3H]choline or [3H]glycerol incorporation into phosphatidylcholine (PC). The phosphocholine pool decreased approximately 40% in keeping with a stimulation of the CT-catalyzed reaction. The CDP-choline pool increased 12-fold suggesting that the conversion of CDP-choline to PC, catalyzed by cholinesphosphotransferase, could not keep pace with the CT-catalyzed reaction. This could account for the discrepancy between the increases in the amount of active (membrane-bound) CT and the rate of PC synthesis. Incubation of CT-transfected cells with sodium oleate to increase the supply of cellular diacylglycerol resulted in a further 2-fold increase in the rate of PC synthesis. This suggests that the diacylglycerol supply may be a limiting factor in the degree of stimulation of PC synthesis in CT-transfected COS cells. Despite the increased rate of PC synthesis, the total cellular PC mass increased only 17%, due to a 3-fold acceleration of the PC degradation rate. To determine which degradative pathway for PC was accelerated in the CT-transfected cells, we measured the pool sizes of several catabolites. Neither diacylglycerol nor phosphatidic acid mass was altered. The pool of glycerophosphocholine (GPC) was increased approximately 4-fold, and there was elevated release of GPC from the CT-transfected cells. The turnover of choline in GPC and lyso-PC was very slow compared with that of choline, phosphocholine, or CDP-choline, suggesting that GPC and lyso-PC were derived from slowly degraded choline-labeled PC. The metabolism of GPC and lyso-PC was stimulated in the cells over-expressing CT. These data suggest that PC synthesis and degradation are coordinated and that PC catabolism involving PC-->lyso-PC-->GPC is accelerated in COS cells overexpressing CT.
    [Abstract] [Full Text] [Related] [New Search]