These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Integrity of the permeability barrier is crucial for maintenance of the epidermal calcium gradient.
    Author: Menon GK, Elias PM, Feingold KR.
    Journal: Br J Dermatol; 1994 Feb; 130(2):139-47. PubMed ID: 8123567.
    Abstract:
    Prior studies have demonstrated a Ca2+ gradient within the epidermis, with the highest concentration in the outer nucleated layers, disappearance of the Ca2+ gradient when the permeability barrier is acutely disrupted, and reappearance of the Ca2+ gradient in parallel with barrier repair, and disruption of the gradient in psoriasis. These observations suggest that integrity of the permeability barrier may maintain the epidermal Ca2+ gradient. To determine further whether a functional barrier is crucial for maintaining the Ca2+ gradient, we examined Ca2+ distribution by ion-capture cytochemistry in essential-fatty-acid-deficient (EFAD) and topical-lovastatin-treated mice, which display a chronic barrier abnormality. In both models, loss of the Ca2+ gradient occurred due to increased cytosolic Ca2+ in the lower epidermis, which normally displays a paucity of Ca2+. Moreover, artificial barrier restoration for 48 h with a water vapour-impermeable wrap normalized the Ca2+ distribution pattern. Acute barrier disruption also leads to the loss of the Ca2+ gradient, but in contrast with the chronic models, loss of the gradient was due to decreased Ca2+ in the upper epidermis. Occlusion with a vapour-impermeable wrap blocked restoration of the Ca2+ gradient after acute barrier disruption. These results demonstrate that chronic barrier disruption increases Ca2+ in the epidermis, and blockade of water flux normalizes Ca2+ distribution, whereas acute barrier disruption leads to loss of Ca2+, and blockade of water flux prevents the return of Ca2+. We conclude: (i) that the epidermal Ca2+ reservoir is derived from the movement of fluids and Ca2+ across the basement membrane, and (ii) that the integrity of the permeability barrier maintains the epidermal Ca2+ gradient.
    [Abstract] [Full Text] [Related] [New Search]