These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene.
    Author: Höfgen R, Axelsen KB, Kannangara CG, Schüttke I, Pohlenz HD, Willmitzer L, Grimm B, von Wettstein D.
    Journal: Proc Natl Acad Sci U S A; 1994 Mar 01; 91(5):1726-30. PubMed ID: 8127872.
    Abstract:
    Glutamate 1-semialdehyde aminotransferase [(S)-4-amino-5-oxopentanoate 4,5-aminomutase, EC 5.4.3.8] catalyzes the last step in the conversion of glutamate to delta-aminolevulinate of which eight molecules are needed to synthesize a chlorophyll molecule. Two full-length cDNA clones that probably represent the homeologous Gsa genes of the two tobacco (Nicotiana tabacum) genomes have been isolated. The deduced amino acid sequences of the 468-residue-long precursor polypeptides differ by 10 amino acids. The cDNA sequence of isoenzyme 2 was inserted in reverse orientation under the control of a cauliflower mosaic virus 35S promoter derivative in an expression vector and was introduced by Agrobacterium-mediated transformation into tobacco plants. Antisense gene expression decreased the steady-state mRNA level of glutamate 1-semialdehyde aminotransferase, the translation of the enzyme, and chlorophyll synthesis. Remarkably, partial or complete suppression of the aminotransferase mimics in tobacco a wide variety of chlorophyll variegation patterns caused by nuclear or organelle gene mutations in different higher plants. The antisense gene is inherited as a dominant marker.
    [Abstract] [Full Text] [Related] [New Search]