These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding of nuclear proteins to HTLV-II cis-acting repressive sequence (CRS) RNA correlates with CRS function.
    Author: Black AC, Ruland CT, Luo J, Bakker A, Fraser JK, Rosenblatt JD.
    Journal: Virology; 1994 Apr; 200(1):29-41. PubMed ID: 8128629.
    Abstract:
    The shift from viral regulatory to structural gene expression in human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) is mediated by Rex. We have previously shown that HTLV-II Rex acts through an element in R/U5 of the 5' long terminal repeat (LTR), the Rex-responsive element (RxRE), and that Rex protein binds to specific RNA sequences, the Rex binding element (RBE), contained within the RxRE (Black et al., J. Virol. 65, 6645-6653, 1991b). Rex action through the RBE (nt 405-520) overcomes the inhibition of expression conferred by a contiguous LTR RNA regulatory element, which contains cis-acting repressive sequences (CRS; nt 520-630) that are not bound by Rex protein (Black et al., Virology, 181, 433-444, 1991a). We now show by electrophoretic mobility shift assay (EMSA) that cellular proteins in a HeLa nuclear extract bind specifically to RNA transcripts containing the HTLV-II CRS. Using ultraviolet (uv) crosslinking of gel-retarded bands, we identified a major protein species of approximately 60 kDa, p60CRS, that binds to CRS RNA and, with weaker affinity, to RBE RNA. In addition, a distinct 40-kDa protein, p40CRS, binds to U5 RNA (nt 645-750) downstream from the CRS. Specific deletions within CRS RNA can reduce or abrogate binding to this 60-kDa protein. EMSA and uv crosslinking assays also suggest that both p60CRS and p40CRS interact with CRS RNA. CRS function in a 5' LTR-linked gene expression assay correlates with the ability of both p60CRS and p40CRS to interact with 5' LTR RNA in vitro.
    [Abstract] [Full Text] [Related] [New Search]