These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conversion of an anti-single-stranded DNA active site to an anti-fluorescein active site through heavy chain complementarity determining region transplantation.
    Author: Gulliver GA, Bedzyk WD, Smith RG, Bode SL, Tetin SY, Voss EW.
    Journal: J Biol Chem; 1994 Mar 18; 269(11):7934-40. PubMed ID: 8132513.
    Abstract:
    Complementarity determining region (CDR) transplant studies were conducted between two monoclonal antibodies of distinctly different specificities (anti-fluorescein monoclonal antibody (mAb) 4-4-20 and anti-single-stranded DNA (ssDNA) mAb 04-01) which possessed nearly identical light chains but dissimilar heavy chains. The variations in binding specificities between the two immunoglobulins suggested that the active-site features of anti-fluorescein antibodies were dictated by characteristics intrinsic to the heavy chain (H-chain). To identify specific regions of the H-chain which influence the structure and function of an anti-fluorescein active site, CDR transplantation was systematically employed to convert the anti-ssDNA 04-01 antibody active site to an active site with anti-fluorescein activity. Each mAb 4-4-20 H-chain CDR (HCDR) was transplanted into the H-chain of a single-chain derivative of the 04-01 molecule. A fluorescence polarization ligand binding assay was utilized to determine the equilibrium dissociation constant, Kd, of hybrid transplant single-chain antibody HCDR1-HCDR2-HCDR3(4-4-20) for fluorescein (3.8 x 10(-7) M, indicating successful conversion of an anti-ssDNA active site to an anti-fluorescein binding site. A similar Kd (6.3 x 10(-7) M) was determined using a fluorescein fluorescence quenching assay. The transplantation results are discussed in terms of the relative contribution of each HCDR to a successful conversion in antibody specificity.
    [Abstract] [Full Text] [Related] [New Search]