These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis.
    Author: Ma K, Robb FT, Adams MW.
    Journal: Appl Environ Microbiol; 1994 Feb; 60(2):562-8. PubMed ID: 8135516.
    Abstract:
    Thermococcus litoralis is a strictly anaerobic archaeon that grows at temperatures up to 98 degrees C by fermenting peptides. Little is known about the primary metabolic pathways of this organism and, in particular, the role of enzymes that are dependent on thermolabile nicotinamide nucleotides. In this paper we show that the cytoplasmic fraction of cell extracts contained NADP-specific glutamate dehydrogenase (GDH) and NADP-specific alcohol dehydrogenase (ADH) activities, neither of which utilized NAD as a cofactor. The GDH is composed of identical subunits having an M(r) of 45,000 and had an optimal pH and optimal temperature for glutamate oxidation of 8.0 and > 95 degrees C, respectively. Potassium phosphate (60 mM), KCl (300 mM), and NaCl (300 mM) each stimulated the rate of glutamate oxidation activity between two- and threefold. For glutamate oxidation the apparent Km values at 80 degrees C for glutamate and NADP were 0.22 and 0.029 mM, respectively, and for 2-ketoglutarate reduction the apparent Km values for 2-ketoglutarate, NADPH, and NH4+ were 0.16, 0.14, and 0.63 mM, respectively. This enzyme is the first NADP-specific GDH purified form a hyperthermophilic organism. T. litoralis ADH is a tetrameric protein composed of identical subunits having an M(r) of 48,000; the optimal pH and optimal temperature for ethanol oxidation were 8.8 and 80 degrees C, respectively. In contrast to GDH activity, potassium phosphate (60 mM), KCl (0.1 M), and NaCl (0.3 M) inhibited ADH activity, whereas (NH4)2SO4 (0.1 M) had a slight stimulating effect. This enzyme exhibited broad substrate specificity for primary alcohols, but secondary alcohols were not oxidized.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]