These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extracellular glutathione peroxidase mRNA and protein in human cell lines.
    Author: Avissar N, Kerl EA, Baker SS, Cohen HJ.
    Journal: Arch Biochem Biophys; 1994 Mar; 309(2):239-46. PubMed ID: 8135533.
    Abstract:
    Extracellular glutathione peroxidase (E-GPx) and cellular glutathione peroxidase (C-GPx) are selenoenzymes encoded by two distinct genes. Using specific immunoprecipitations of [75Se]selenium metabolically labeled human cell lines in culture, it was found that Caco-2, Hep3B, Hep G2, and Caki-2 synthesize C-GPx and E-GPx and secrete E-GPx. HBL-100, BT-20, and MCF-7 synthesize only C-GPx. The relationship between Se status (as determined by C-GPx activity) and E-GPx and C-GPx mRNA steady-state levels was investigated in Hep G2, Caco-2, and Caki-2. The most Se-deficient Hep G2, Caco-2, and Caki-2 cells had 8.7 +/- 2.6, 11.2 +/- 4.9, and 9.4 +/- 5.0%, respectively, of C-GPx activity of the replete cells. The steady-state levels of mRNA were measured by Northern and slot blot hybridization analysis. By Northern analysis, a single band was present at 1.0 and 1.80 kb for C-GPx and E-GPx mRNA, respectively, in all three cell lines. Scanning densitometry of the blots revealed that the most Se-deficient cells had 30-50% C-GPx mRNA and 60-80% E-GPx mRNA of the replete cells. It is concluded that, in addition to previously examined human cell lines, Hep3B and Caco-2 make and secrete E-GPx while HBL-100 and BT-20 do not. The slightly reduced levels of G-GPx and E-GPx mRNA in Se-deficient human cell lines can only partially account for the decreased C-GPx activity in Se-deficient human cell lines.
    [Abstract] [Full Text] [Related] [New Search]