These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of protein kinase-A in homologous down-regulation of parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acid in human osteoblast-like SaOS-2 cells. Author: Fukayama S, Schipani E, Jüppner H, Lanske B, Kronenberg HM, Abou-Samra AB, Bringhurst FR. Journal: Endocrinology; 1994 Apr; 134(4):1851-8. PubMed ID: 8137752. Abstract: Homologous down-regulation of PTH/PTH-related peptide (PTHrP) receptor expression occurs in several PTH-responsive osteoblastic cell lines, but the mechanisms responsible are not well understood. We have used wild-type SaOS-2 human osteoblastic cells, in which homologous PTH/PTHrP receptor down-regulation occurs within 4 h, and a mutant cAMP-resistant subclone (Ca4A strain), to investigate the mechanisms by which PTH/PTHrP receptor mRNA is regulated. SaOS-2 cells expressed a single 2.2- to 2.5-kilobase transcript of PTH/PTHrP receptor mRNA, as assessed by Northern blot analysis of total RNA with a cDNA probe encoding the human PTH/PTHrP receptor. Homologous down-regulation of this PTH/PTHrP receptor mRNA first became significant when SaOS-2 cells had been treated with human (h) PTH-(1-34) (10(-7) M) for 8-12 h. By 24 h, steady state levels of PTH/PTHrP receptor mRNA were reduced by about 50%. This effect was mimicked by both (Bu)2cAMP (DBcAMP; 0.5 mM) and forskolin (Fsk; 10(-5) M). In contrast, down-regulation of PTH/PTHrP receptor mRNA by hPTH-(1-34), DBcAMP or Fsk was almost completely blocked in cAMP-resistant Ca4A cells. Short term (4-6 h) treatment with hPTH-(1-34), DBcAMP, or Fsk did not reduce steady state levels of PTH/PTHrP receptor mRNA in either SaOS-2 or Ca4A cells, although down-regulation was induced by 4-6 h of treatment with active phorbol esters such as 12-O-tetradecanoyl phorbol-13-acetate (200 nM) or phorbol-12,13-didecanoate (200 nM). Neither thapsigargin (1 microM) nor ionomycin (200 nM), both of which stimulate calcium transients in these cells, altered PTH/PTHrP receptor mRNA expression. Treatment with hPTH-(39-84) and hPTH-(53-84), which do not activate either cAMP-dependent protein kinase or protein kinase-C, but do stimulate 45Ca2+ uptake in these cells, did not alter PTH/PTHrP receptor mRNA expression. In the presence of actinomycin-D (1 microgram/ml), down-regulation of PTH/PTHrP receptor mRNA by hPTH-(1-34) was not observed. Cycloheximide (10 micrograms/ml) did not block down-regulation of PTH/PTHrP receptor mRNA induced by hPTH-(1-34). We conclude that homologous down-regulation of PTH/PTHrP receptor mRNA in SaOS-2 cells occurs later than the decline in functional surface receptors via a mechanism that does not involve enhanced mRNA degradation or new protein synthesis, but is dependent upon cAMP/cAMP-dependent protein kinase.[Abstract] [Full Text] [Related] [New Search]